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Articles on causal modelling tend to present causation as a more robust link than correlation 

and tend to emphasize that causal models are more robust than models simply based on 

correlation. In many papers (see for example Scholkopf and Kukelgen) it is clearly stated that 

the current interest for causal modelling is due to the need to make advanced ML applications 

more robust. Causal modelling for business, economic and financial applications is primarily 

used as a decision support tool, but robustness is still an important concern.  

But this article claims that the dichotomy correlation vs. causation gives only a partial view of 

the problem of modelling physical reality as well as business, economic, financial, and social 

systems. Much of modern physical modelling is based on laws that are neither correlation nor 

causation. Much of modern science is based on descriptive laws and much of scientific 

explanation is logical not causal. On the contrary, as we will discuss, probabilistic models of 

business, economic, financial, and social systems exhibit primarily causal functional 

relationship. The key reason is that probabilistic functional relationships are generally 

noninvertible. 

In many domains, no truly fundamental laws are known with certainty. Knowledge is 

probabilistic and acquired through learning. In most cases, the process of knowledge discovery 

starts with estimating correlation. In these situations, it is natural to look for functional 

relationships as the next step of knowledge discovery. However, probabilistic functional 

relationships are generally non-invertible. Non-invertible functional relationships are the 

signature of causation. 

 

Correlation 

Consider two random variables, X and Y that belong to a bigger system. Suppose X and Y are 

correlated which means they move together. Important to note that we are discussing static or 

atemporal relationships between variables not time-dependent processes. Correlation between 

two variables means that, given an independent sample of pairs (X,Y), we will find that they have 

a similar behavior relative to the respective means. 



The relationship of correlation is observational, which means that to compute correlations we 

simply observe the behavior of variables. Therefore, computing correlations gives no guarantee 

that an independent mechanism be responsible for correlation. Correlation between X and Y 

might depend on the system in which X and Y are embedded. In particular, correlation might 

depend on confounders, that is, empirical correlation might depend on a third variable. For 

example, suppose X and Y are the returns of the stocks of two firms. If the two firms are 

suppliers of the same large firm the correlation of X and Y might depend on the third firm.  

The possible existence of confounders is the main reason why correlation is considered a weak 

relationship. In practice, there are also other reasons. For instance, in financial econometrics, 

in business and social studies, only rarely we have large samples. Therefore, we cannot really 

trust estimation. If we are working with large systems of hundreds of variables the covariance 

matrix estimated on samples of reasonable size will be noisy. In addition, modern economies 

are evolving complex systems which means that a correlation coefficient does not describe a 

stable economic reality. Correlation might break down because the economy changes. 

But the paucity of data and the evolving nature of economies are problems common to all 

econometric tools that need to be estimated. The weakness of correlation is attributed primarily 

to the fact that correlation does not describe a mechanism independent from the environment. 

There is always the possibility of spurious correlations. 

There are examples often used in the literature such as the correlation between consumption of 

ice cream and number of drownings of swimmers. The two variables are correlated but 

obviously there is no direct mechanism that links drownings and ice cream consumption. 

An observation is in order. The Reichenbach common cause principle (RCCP) states that two 

variables X and Y can be correlated only if one variable causes the other or if there is a third 

variable Z causing both variables. In this case the two variables are conditionally independent: 

𝑃(𝑋𝑌|𝑍) = 𝑃(𝑋|𝑍)𝑃(𝑌|𝑍) 

The RCCP principle is widely used in many algorithms for causal discovery, though it is known 

that it admits exceptions. The RCCP applies to observed correlation: we observe the correlation 

between two variables, and we conclude that either one of the two variables causes the other 

one or a third variable causes both variables.  

Why do we consider only causal relationships? The reason is twofold. First deterministic, non-

causal relationships between X and Y would be common in the domain of physical systems but 

are basically excluded from the probabilistic, uncertain domains that we are considering. 



Correlations are computed only in probabilistic systems; computing correlations for 

deterministic systems has little or no interest. Second, critically important, probabilistic 

functional relationships are generally non-invertible. Probabilistic functional relationships are 

therefore primarily causal relationships. This is the main topic of this article. 

 

Causation in physical systems 

It is useful to start by studying physical systems. Studying causation is difficult for several 

reasons including the lack of an independent definition of causation. Causation has been 

studied by philosophers since antiquity. Aristotle was the first to create a systematic theory of 

causation. Intuitively, causation responds to the question: Why things happen? But defining the 

object of causation is difficult. Are we discussing causation between events? Or between facts? 

Or between variables? The progress made in the last thirty years in studying causation is 

partially due to the framing of causation in mathematical terms as a relationship between 

variables. 

Let’s therefore restrict the concept of causation to variables: we say that a variable X causes a 

variable Y if a change of X is followed by a change of Y. In the probabilistic case we say that after 

a change of X we will find a change of the probability distribution of Y. The concept of causation 

is inherently asymmetric: a variable X has a causal effect on a variable Y but not vice versa. This 

is the key for distinguishing causation from functional relationships: causation is an 

asymmetrical functional relationship. 

Is modern science a causal theory? To answer this question let’s first analyse the concept of 

scientific explanation in physics. Loosely speaking, scientific explanation consists in 

establishing fundamental laws that apply to everything. The behavior of actual physical systems 

can be logically inferred from fundamental laws through mathematical deductions. There is no 

ontological commitment in modern physics, there is no attempt to find a deep, ontological 

Why?. There are basic laws and logical deductions. 

This is the essence of the Deductive-Nomological (DM) theory of Carl Hempel and Paul 

Oppenheim. Modern physical laws are typically formulated with differential equations. The DM 

principle claims that scientific explanations consist in applying basic laws with appropriate 

initial and boundary conditions that describe the system. For instance, if we want to study how 

temperature propagates in a piece of metal, we solve the heat equations with appropriate initial 

and boundary conditions. 



It is meaningless to ask why temperature propagates according to the heat equations, or why 

material points obey Newton’s laws of dynamics or why electromagnetic fields propagate 

according to Maxwell’s equations. Fundamental laws have the status of empirical theories, that 

is, they are empirical hypotheses. Fundamental laws are logically interconnected. The Duhem-

Quine principle states that science, physics in particular, responds globally to the empirical 

test.  

Science evolves in time. According to Thomas Kuhn the progress of science is not smooth but 

happens through discrete, disruptive paradigm shifts, where old laws and descriptive 

frameworks are replaced by new laws and new descriptive frameworks. The new theories are 

often incommensurable with old theories. 

Modern science questions reductionism, that is the idea that there is a set of universal laws that 

explain everything. In the 1972 paper More is Different, Philip Anderson, recipient of the 1977 

Nobel Prize in Physics, claimed that physics is hierarchical, that is, there is a hierarchy of 

physical theories that cannot be reduced to a single theory but needs special principles. This 

point of view is now shared by many scientists. 

Fundamental physics is not causal.1 Differential equations are not causal. Physics exhibits also 

functional relationships that are not causal. For instance, in classical physics, the force of 

gravitation between two masses is represented by the formula  

𝐹 = 𝐾
𝑚1𝑚2

𝑟^2
 

This is a deterministic formula that links four variables. It is an empirical hypothesis verified in 

the course of more than three centuries. Above all, this formula does not exist in isolation, but it 

belongs to the theory of classical dynamics. According to the Duhem-Quine thesis theories 

respond to the empirical test globally. This law, taken together with the law of dynamics 

𝐹 = 𝑚𝑎 

allows to derive the motion of the planets. Therefore, the level of validation of universal 

gravitation is high.2  

 
1 Quantum mechanics would need a separate discussion beyond the scope of this paper. 
2 General Relativity has replaced classical Newtonian gravitation law with a new law of gravitation based 
on the curvature of the space-time. We ignore this point because Newtonian gravitation is still a good 
approximation and because it is not important for our present discussion.  



The law of gravitation is not a causal law, it is a descriptive law. It is a descriptive law because it 

is symmetrical and invertible while causality means that a variable X causes a variable Y but not 

vice versa. We do not say that the law of gravitation causes the motion of the planets. The law of 

universal gravitation is a fundamental law of nature. Together with laws of classical dynamics it 

allows to infer the motion of any object, from planets to projectiles. And we do not say that the 

law of gravitation describes a mechanism. It is a basic principle, a law of nature that we have 

observed in many direct measurements. In addition, it implies innumerable consequences such 

as the motion of the planets.  

However, in practice science studies not only basic laws but also systems, be they molecules of 

drugs or the Earth climate. In addition, “soft” systems such as biological systems are studied, at 

least partially, with scientific methods. These soft systems exhibit causal behavior. And there 

are innumerable physical systems engineered as systems to be controlled. From home 

appliances to planes there are physical systems that exhibit an explicitly causal behavior where 

input variables control output variables. 

Causation is not a law of nature, but it is due to the structure of the systems. The braking system 

of a car is engineered to be causal; it functions according to basic non causal laws, but it is 

engineered so that some variables control other variables asymmetrically. The same principle 

applies to natural causal systems, such as many biological systems. 

In summary: 

1. Science is based on fundamental laws of Nature that are primitive laws which cannot be 

further explained. These laws are not causal 

2. The behavior of physical systems is described through deductions from basic laws and 

initial conditions; deductions from basic laws plus initial conditions is the essence of 

scientific explanations. 

3. Systems might be described by variables whose behavior is represented by non-causal 

laws.  

4. Some physical systems are engineered to be controlled; they exhibit input variables that 

can be manipulated arbitrarily and output variables that depend on input but not vice 

versa. Causal systems implement a causal mechanism that can be explained through 

deductions from basic laws plus conditions that describe the system. 

 

“Soft systems”: economies, financial markets, social systems, firms 



For most systems such as financial markets and social and economic systems it would be 

impossible to establish deterministic laws of nature with a reasonable level of precision. Simply 

put, the behavior of these systems is too complex to be reduced to a deterministic axiomatic 

theory. The main reason is that we cannot reduce complex systems to the behavior of 

elementary components.  

These systems are complex evolving systems. Thus far no elementary law has been found and it 

is questionable whether elementary laws for economies and social systems do exist. 

Understanding social, economic, financial and business systems heavily relies on learning. 

Given the level of uncertainty learning is generally formulated in a probabilistic framework. 

The simplest level of learning is learning correlations. Suppose we have defined the descriptive 

framework of the system we want to study. Suppose also that historical data are available so 

that we can compute a covariance matrix. As discussed in the previous paragraphs the 

covariance matrix is a weak description of the system because of confounders.  

The next level of description would be to learn functional relationships or even dynamical laws. 

Let’s point out explicitly that learning causal models is not the only way of learning functional 

relationships between descriptive variables. If we allow models to be dynamic a number of 

different modelling strategies are available.  

System Dynamics, invented and developed by Jay Forrester at MIT in the 1950-1970 period is a 

technique for developing models that include feedback loops and delays. System Dynamics 

was used to create WORLD3, a model of the world economy developed by a team at MIT that 

produced the famous report The limits of development. 

Linear models such as Vector Auto Regressive (VAR) models are widely used. VAR models offer 

a dynamic representation of systems that evolve in time. Non-linear models, such as Regime 

Shifting models represent systems that exhibit jumps between different states.  

But discussing dynamic models and eventual notions of dynamic causality is beyond the scope 

of this paper. Here we want to discuss the current generation of causal models and their 

relationship to non-causal models. 

The state-of-the-art causal model is the SCM model developed by Judea Pearl and his 

collaborators and by a group of philosophers at the Carnegie Mellon University: Peter Spirtes, 

Clark Glymour, and Richard Scheines who developed TETRAD a software for creating causal 

models and for discovering causal structures. 



Suppose a system is described by a set of variables 𝑋𝑖, 𝑖 = 1, … , 𝑛. A SCM is formed by a set of 

structural equations: 𝑋𝑖 = 𝑓(𝑃𝐴𝑖, 𝑈𝑖) where 𝑃𝐴𝑖 represents the variables that are direct causes 

of Xi and Ui is a random term. Under a number of non-statistical assumptions, a SCM can be 

learned from a covariance matrix. The assumptions essentially require that the SCM represent a 

causal structure. If we assume that the Uis are independent there are no confounders, and the 

causal system can be estimated. 

Why this emphasis on causality? While don’t we search for invertible functional relationships as 

in the physical case?  

Recall from the previous sections, that in the physical case laws of nature which are not causal, 

coexist with non-causal and causal functional relationships. Why in the soft cases it seems that 

causal systems are the most important, and perhaps the only, representation of static systems? 

There are two different types of explanations. The first is that in daily life as well as in business 

and in economics we are primarily interested in tools to support decision making. Soft systems 

are primarily human systems where we are interested in making decisions such as business 

decisions or policy changes. Therefore, we have an obvious interest in understanding causality. 

In medical applications we are interested, for instance, in understanding if a treatment is 

effective or not. Therefore, again we have an obvious interest in causation. 

The second reason is technical. It is unlikely that we can invert static functional relationships 

that include probabilistic terms. The intuition is the following. A functional relationship Y=f(X) is 

generally a one-to-one relationship between a value of X and a value of Y. Therefore, it is 

reasonable to assume that a deterministic functional relationship be invertible. 

However, a probabilistic functional relationship Y=f(X,U) projects every X into a set of values Y. It 

is therefore difficult to invert such a relationship. The CMU blog 7-Causal inference 

(https://blog.ml.cmu.edu/2020/08/31/7-causality/ ), authored by Lucas, Huang and Stelmakh, 

offers a simple explanation. Consider a simple regression: 

𝑌 = 𝑓(𝑋) + 𝑢 

where u is a noise term uncorrelated with X. If we try to invert this relationship we obtain in 

general: 

𝑋 = 𝑔(𝑌) + 𝑣 

Where v is no longer independent from Y. In other words, a regression equation cannot be 

inverted because, except in special cases, we will obtain different regression equations.  

https://blog.ml.cmu.edu/2020/08/31/7-causality/


 

Differences between functional relationship and causal relationships 

From the above we see that the main difference between causation and functional relationship 

is that causation is a non-invertible functional relationship. An invertible functional relationship 

cannot be causal because we cannot intervene on both variables. For example, when we push 

the brake pedal, we want to make sure that the car stops, and we do not want to experience an 

opposite reaction that the car continues to go and moves the brake pedal. Non-causal 

functional relationships do not admit interventions. 

In the deterministic case, which is prevalent in physical systems, there are both causal and non-

causal relationships. Non causal relationships are typical of laws where we cannot intervene, 

while causal relationships are engineered to allow interventions.  

In the probabilistic case, prevalent in soft applications, functional dependencies are generally 

non-invertible, have a direction and therefore are causal relationships. 

 

In summary 

In summary, in physics there is a sharp distinction between laws of nature and laws descriptive 

of physical systems. Laws of nature are primarily differential equations, that describe 

processes. However, there are laws of nature formulated as functional relationships. 

Laws of nature are primitive and are not justified or cannot be inferred from other principles. 

Laws of nature are descriptive not causal. Laws describing relationships between descriptive 

variables of physical systems might be descriptive or causal. Both imply independent 

mechanisms. The difference is essentially that causal laws are asymmetric while descriptive 

laws are symmetric. 

“Soft systems” such as economies, financial markets, social systems, and firms do not admit 

laws of nature. Perhaps it is safer to state that thus far no law of nature for soft systems have 

been discovered. There is no well-established theory, validated with a high level of precision. 

Much knowledge about these systems is obtained through learning. 

We can recognize three levels of description. Correlations are empirical laws that might depend 

on the entire system. That is, correlations might be influenced by confounders. To reach a higher 

level of robustness, we must write functional equations. Functional equations imply the 



existence of independent mechanisms which, given the absence of fundamental laws have to 

remain unspecified.  

Probabilistic causal relationships are generally non-invertible and therefore are causal 

relationships.  


